Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732675

RESUMEN

Pervaporation is considered the most promising technology for dehydration of bioalcohols, attracting increasing attention as a renewable energy source. In this regard, the development of stable and effective membranes is required. In this study, highly efficient membranes for the enhanced pervaporation dehydration of ethanol were developed by modification of sodium alginate (SA) with a polyethylenimine (PEI) forming polyelectrolyte complex (PEC) and graphene oxide (GO). The effect of modifications with GO or/and PEI on the structure, physicochemical, and transport characteristics of dense membranes was studied. The formation of a PEC by ionic cross-linking and its interaction with GO led to changes in membrane structure, confirmed by spectroscopic and microscopic methods. The physicochemical properties of membranes were investigated by a thermogravimetric analysis, a differential scanning calorimetry, and measurements of contact angles. The theoretical consideration using computational methods showed favorable hydrogen bonding interactions between GO, PEI, and water, which caused improved membrane performance. To increase permeability, supported membranes without treatment and cross-linked were developed by the deposition of a thin dense layer from the optimal PEC/GO (2.5%) composite onto a developed porous substrate from polyacrylonitrile. The cross-linked supported membrane demonstrated more than two times increased permeation flux, higher selectivity (above 99.7 wt.% water in the permeate) and stability for separating diluted mixtures compared to the dense pristine SA membrane.

2.
Polymers (Basel) ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732705

RESUMEN

Recently, increasing attention of researchers in the field of membrane technology has been paid to the development of membranes based on biopolymers. One of the well-proven polymers for the development of porous membranes is cellulose acetate (CA). This paper is devoted to the study of the influence of different parameters on ultrafiltration CA membrane formation and their transport properties, such as the variation in coagulation bath temperature, membrane shrinkage (post-treatment at 80 °C), introduction to casting CA solution of polymers (polyethylene glycol (PEG), polysulfone (PS), and Pluronic F127 (PL)) and carbon nanoparticles (SWCNTs, MWCNTs, GO, and C60). The structural and physicochemical properties of developed membranes were studied by scanning electron and atomic force microscopies, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements. The transport properties of developed CA-based membranes were evaluated in ultrafiltration of bovine serum albumin (BSA), dextran 110 and PVP K-90. All developed membranes rejected 90% compounds with a molecular weight from ~270,000 g/mol. It was shown that the combination of modifications (addition of PEG, PS, PL, PS-PL, and 0.5 wt% C60) led to an increase in the fluxes and BSA rejection coefficients with slight decrease in the flux recovery ratio. These changes were due to an increased macrovoid number, formation of a more open porous structure and/or thinner top selective, and decreased surface roughness and hydrophobization during C60 modification of blend membranes. Optimal transport properties were found for CA-PEG+C60 (the highest water-394 L/(m2h) and BSA-212 L/(m2h) fluxes) and CA-PS+C60 (maximal rejection coefficient of BSA-59%) membranes.

3.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36904461

RESUMEN

Membrane technology is an actively developing area of modern societies; with the help of high-performance membranes, it is possible to separate various mixtures for many industrial tasks. The objective of this study was to develop novel effective membranes based on poly(vinylidene fluoride) (PVDF) by its modification with various nanoparticles (TiO2, Ag-TiO2, GO-TiO2, and MWCNT/TiO2). Two types of membranes have been developed: dense membranes for pervaporation and porous membranes for ultrafiltration. The optimal content of nanoparticles in the PVDF matrix was selected: 0.3 wt% for porous membranes and 0.5 wt% for dense ones. The structural and physicochemical properties of the developed membranes were studied using FTIR spectroscopy, thermogravimetric analysis, scanning electron and atomic force microscopies, and measuring of contact angles. In addition, the molecular dynamics simulation of PVDF and the TiO2 system was applied. The transport properties and cleaning ability under ultraviolet irradiation of porous membranes were studied by ultrafiltration of a bovine serum albumin solution. The transport properties of dense membranes were tested in pervaporation separation of a water/isopropanol mixture. It was found that membranes with the optimal transport properties are as follows: the dense membrane modified with 0.5 wt% GO-TiO2 and the porous membrane modified with 0.3 wt% MWCNT/TiO2 and Ag-TiO2.

4.
Polymers (Basel) ; 13(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072762

RESUMEN

Modification of polymer matrix by hybrid fillers is a promising way to produce membranes with excellent separation efficiency due to variations in membrane structure. High-performance membranes for the pervaporation dehydration were produced by modifying poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) to facilitate lactic acid purification. Ionic liquid (IL), heteroarm star macromolecules (HSM), and their combination (IL:HSM) were employed as additives to the polymer matrix. The composition and structure of hybrid membranes were characterized by X-ray diffraction and FTIR spectroscopy. Scanning electron microscopy was used to investigate the membranes surface and cross-section morphology. It was established that the inclusion of modifiers in the polymer matrix leads to the change of membrane structure. The influence of IL:HSM was also studied via sorption experiments and pervaporation of water‒lactic acid mixtures. Lactic acid is an essential compound in many industries, including food, pharmaceutical, chemical, while the recovering and purifying account for approximately 50% of its production cost. It was found that the membranes selectively remove water from the feed. Quantum mechanical calculations determine the favorable interactions between various membrane components and the liquid mixture. With IL:HSM addition, the separation factor and performance in lactic acid dehydration were improved compared with pure polymer membrane. The best performance was found for (HSM: IL)-PPO/UPM composite membrane, where the permeate flux and the separation factor of about 0.06 kg m-2 h-1 and 749, respectively, were obtained. The research results demonstrated that ionic liquids in combination with star macromolecules for membrane modification could be a promising approach for membrane design.

5.
Molecules ; 26(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668455

RESUMEN

Novel polymer composites based on polyamide-imide Torlon and deep eutectic solvent (DES) were fabricated and adapted for separation processes. DES composed of zinc chloride and acetamide in a ratio of 1:3 M was first chosen as a Torlon-modifier due to the possibility of creating composites with a uniform filling of the DES through the formation of hydrogen bonds. The structure of the membranes was investigated by scanning electron microscopy and X-ray diffraction analysis; thermal stability was determined by thermogravimetric analysis and mass spectrometry. The surface of the composites was studied by determining the contact angles and calculating the surface tension. The transport properties were investigated by such membrane methods as pervaporation and gas separation. It was found that the inclusion of DES in the polymer matrix leads to a significant change in the structure and surface character of composites. It was also shown that DES plays the role of a plasticizer and increases the separation performance in the separation of liquids and gases. Torlon/DES composites with a small amount of modifier were effective in alcohol dehydration, and were permeable predominantly to water impurities in isopropanol. Torlon/DES-5 demonstrates high selectivity in the gas separation of O2/N2 mixture.


Asunto(s)
Gases/aislamiento & purificación , Imidas/química , Nylons/química , Solventes/química , Espectrometría de Masas , Conformación Molecular , Nitrógeno/química , Oxígeno/química , Permeabilidad , Tensión Superficial , Temperatura , Termogravimetría , Agua , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...